Materiales que revolucionan la nanoelectrónica

CIENCIA UANL / AÑO 19, No. 77, ENERO-FEBRERO 2016
Los transistores –que revolucionaron la electrónica a mediados del siglo pasado– se basan en uniones de materiales semiconductores, con una carga eléctrica que fluye entre ellos. Su tamaño ha tenido que disminuir a proporciones diminutas, hasta los 15 nanómetros, para no quedarse atrás en la vertiginosa carrera emprendida por la computación.
“La tecnología se ha tenido que enfrentar a los límites de validez de las leyes físicas que gobiernan estos flujos de la carga”, explica Jacobo Santamaría, director del Grupo de Física de Materiales Complejos de la Universidad Complutense de Madrid (UCM).
Desde hace unas décadas, la física de materiales trata de buscar nuevos materiales y efectos que, en un futuro, sustituyan o complementen a los actuales para mantener el ritmo de crecimiento de la computación.
En este contexto, uno de los campos en expansión es el de los óxidos complejos de metales de transición. En un estudio publicado en Nature Physics, un equipo internacional de científicos, del que forma parte Santamaría y otros físicos españoles, ha analizado estos materiales, cuyas propiedades aún no se comprenden bien.
En la investigación, los científicos analizan las uniones entre estos óxidos, en las que ocurren flujos de carga similares a las de los semiconductores en los transistores, pero gobernadas por leyes físicas más complejas y que añaden una mayor versatilidad y posibilidades de control.
Referencia bibliográfica: M. N. Grisolia, J. Varignon, G. Sánchez-Santolino, A. Arora, S. Valencia, M. Varela, R. Abrudan, E.Weschke, E. Schierle, J. E. Rault, J.-P. Rue, A. Barthélémy, J. Santamaría y M. Bibes. “Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces”, Nature Physics, 25 de enero de 2016. DOI: 10.1038/NPHYS3627.
