Basura espacial

Share This
Etiquetas

HERMES MORENO ÁLVAREZ*, MARÍA POLIAKOVA* Y ANTONIO GÓMEZ ROA**

CIENCIA UANL / AÑO 19, No. 81, SEPTIEMBRE-OCTUBRE 2016

Como si se tratara de una película de ciencia ficción, en la que hay héroes al rescate del universo, los científicos ahora deben pensar en resolver un problema de tamaño “cósmico”: ¿cómo limpiar nuestra casa de la basura espacial?

A mediados de 1993, los rusos lanzaron, dentro del cohete “Cosmos 3-M”, el satélite denominado Kosmos 2251. La figura 1 muestra la configuración de este satélite ruso cuya tarea principal era la comunicación; posteriormente, el satélite norteamericano Iridium 33 fue lanzado, en septiembre de 1997, en un cohete Protón K, ambos se desempeñaban en órbita baja.

En febrero de 2009, varios medios de información dieron a conocer la colisión entre estos dos satélites, era la primera vez que esto sucedía. El hecho era alarmante, el satélite Kosmos, con una masa de 900 kg (ya fuera de servicio) y, por otro lado, el satélite Iridium 33 con casi 700 kg de masa, al colisionar generaron fragmentos de diversos tamaños, potencializando el choque con otros satélites con órbitas similares. Inicialmente se dijo que no había amenaza para la Estación Espacial Internacional (EEI), la cual orbita entre 350 y 400 km de altura, sin embargo, en 2012 uno de estos objetos invadió la trayectoria de la EEI, lo que provocó una urgente corrección orbital para la EEI.

Figura 1. Satélite Kosmos 2251 (Van Hoften 1985).

Los fragmentos generados por la colisión del Kosmos no son la única amenaza, existen muchos otros elementos que se pueden considerar como tal, entonces cabría cuestionarnos, ¿cómo localizar la basura espacial?

Los eslabones más importantes para evadir este tipo de accidentes son los telescopios. Localizar los objetos y hacer una base de datos de sus características, sin duda es una tarea que los astrónomos ya han iniciado, con ayuda de estos observadores sensibles y de alta tecnología que permiten vigilar todo el año el movimiento de los cuerpos celestes.

Rusia ha montado un conjunto de telescopios (la figura 2 muestra los tres telescopios de observación) pequeños, pero de gran potencia, que sirven para localizar estos elementos, uno de ellos alberga una lente de 40 cm de diámetro, la cual tiene la capacidad de observar objetos de hasta 60 cm a una distancia de 36,000 km. Esta distancia corresponde a la órbita geoestacionaria, en ésta los satélites parecen estáticos respecto de un punto fijo de la Tierra en rotación y éste, sin duda, es el mejor lugar para facilitar los servicios de comunicación: televisión, etcétera; es decir, aquellos servicios en los se requiere una cobertura territorial determinada. Los otros dos telescopios tienen la tarea de captar los objetos más grandes y en espacios más amplios, mientras que el tercero tiene la tarea de vigilar objetos que están en órbitas más cercanas a la Tierra.

Trayectoria del Iridium.

“Habitualmente los telescopios funcionan al mismo tiempo, vigilando algún objeto en particular; en particular, los nuestros realizan una observación de varios objetos en los espacios más amplios y diferentes” (I. Molotov, entrevista personal, octubre 2012).

Figura 2. Telescopio para detección de basura espacial (Yuraleva 2016).

Una de las principales tareas de los astrónomos es recolectar datos celestes, a estos datos de los elementos observados y detectados como basura espacial se les conoce como catálogo, en este sentido la actualización y mejora de este catálogo necesita de mejores datos, es decir, más exactos.

La noche es el mejor momento para que el observatorio empiece a ejercer funciones, no así el trabajo de los científicos, pues previamente es necesario dar a los telescopios la zona de observación, las partes que serán fotografiadas por los dispositivos ópticos durante toda la noche. La ubicación de estos objetos es posible mediante un tipo de coordenadas llamadas “celestes”, una vez localizado el objeto se toma una exposición y se pasa a la computadora, este proceso continua toda la noche y después es revisado.

La figura 3 muestra una exposición tomada por estos telescopios, se pueden observar puntos y muchos otros elementos parecidos a ciertas aberraciones de tipo astigmáticas, pero ¿qué significa esto?

Figura 3. Toma de fotografía estelar (Academia de Ciencias Rusa, 2015).

Estas aparentes aberraciones corresponden a imágenes de estrellas; se ven así por la exposición de cuadro en diez segundos que el telescopio permanece inmóvil, mientras la Tierra gira, pero a los astrónomos les interesan los puntos que no son tan numerosos. Al referirse a los puntos:

Estos objetos se mueven junto con la Tierra, entonces significa que son o satélites o fragmentos de la basura espacial. Se toman muchas fotos, después se manda toda la información al centro de procesamiento, allá los datos son tratados y analizadas las coordenadas de esos llamados puntos en el momento dado, y comparados con la base de datos que se tiene en catálogos estelares, catálogos satelitales (V. Linkov entrevista personal, octubre 2012).

Puede resultar que este punto sea una basura espacial o cualquier otro satélite desconocido, por lo tanto, es necesario identificarlo, catalogarlo, complementarlo con datos y actualizar el catálogo.

La identificación es la parte especial de este trabajo, todos los objetos notados durante la sesión de observación, con ayuda de las coordenadas espaciales, son comparados con los ya existentes; si los datos coinciden, el objeto es conocido y no hay motivos de preocupación, pero si no, se sacan y se incorporan a un grupo especial de acompañamiento. Por un año los astrónomos registran alrededor de 700 objetos de este tipo, la mitad de éstos es basura espacial. Son los restos de las etapas de los cohetes que giran cerca de la órbita de la Tierra, bloques propulsores que se desprenden del cohete cuando los objetos toman la órbita, aparatos descompuestos que ya terminaron su servicio y que tuvieron que quedarse allí como basura.

Mikhail Lazareue es uno de los responsables por tratamiento de datos de los telescopios, según este autor, la amenaza de los objetos en el espacio es sólo una parte del problema, el otro es la posible caída de la basura a la Tierra, eso puede pasar con los dispositivos descompuestos ubicados en las órbitas bajas, Lazareue nos relata: “Tuvimos casos del abandono, no autorizado, de las órbitas y como hay aparatos del destino especial que no planeábamos bajar –todo eso en unos 40 o 50 años– empezarán a caer a la Tierra bastante rápido”(M. Lazareue, entrevista personal, octubre 2012 ).

Figura 4. Camino del análisis de los datos recabados.

En las oficinas de Moscú, concretamente en el Centro de Ciencias Astronómicas, es donde se piensa evadir los peores escenarios. Aquí llega la información de todos los objetos sospechosos o situaciones preocupantes sobre los acercamientos en el espacio. La información es recibida de observatorios de todo el mundo, incluyendo la aportación mexicana. Ahora son más de 30 observatorios, según los científicos, el flujo anual de medidas de volumen cubrió todo lo que fue recibido de los últimos 40 años. Todos juntos, incluyendo el centro de tratamiento de datos, forman un complejo que se dedica a la prevención de situaciones peligrosas en el espacio, una estructura única y original, la que nunca se ha hecho para el espacio civil.

Este complejo actualmente está en pruebas y se espera un pronto éxito; este sistema, por primera vez, será dedicado directamente al problema de la basura espacial. El principio del sistema es muy simple:

Según la figura 4, los datos de los telescopios, al principio, son tratados en el centro de análisis, es importante ir filtrando los datos o posibles objetos sospechosos que se analizan para conocer en qué partes hay posibilidad de acercamiento, después pasan al centro de control de vuelo el cual inspecciona a los cosmonautas. Los especialistas revisan la información nuevamente y en caso de que se confirme, la pasan a los propietarios del satélite, a la agencia federal espacial, al ministerio de defensa o a las compañías privadas. Ellos decidirán qué hacer, si dejar el satélite esperando a que la amenaza desaparezca o llevarlo a algún lugar.

La pérdida del satélite representa mucho dinero, además de los gastos que se generarán para un lanzamiento nuevo o producción del satélite, su explotación, etcétera. El tiempo que requiere reponer esa merma implica la pérdida de un ingreso considerable, y si el satélite es comercial, se pierde también el beneficio. La corrección de órbita, hoy por hoy, es el método principal para combatir la basura espacial; sin embargo, incluso este método tampoco garantiza el resultado. Para dejar de funcionar, un satélite sólo necesita chocar con un trozo de un centímetro, pero la basura tan pequeña no puede ser detectada por ningún sistema moderno, eso quiere decir que para solucionar el problema se necesita una limpieza global del espacio.

Ya se han propuesto varias soluciones de ingeniería: la captura de los objetos con ayuda de remolques, sistemas de cables electromagnéticos, naves recolectoras, hasta se han propuesto mallas para basura más pequeña, pero por ahora todo se ha quedado en proyectos. ¿Qué tan pronto se realizarán?, depende de varios factores al mismo tiempo: el primero es el factor de ingeniería, porque la dificultad del sistema debe ser primero realizada; el segundo factor es la seguridad, es necesario remolcar la basura sin dañar los satélites que funcionan; y el tercero, la cuestión jurídica, cada elemento de basura pertenece a algún país, entonces se necesitará un permiso para su eliminación. Todos estos temas son discutidos en los foros internacionales ¿se llegará a un acuerdo único para solucionar el problema?

 

 

* Universidad Autónoma de Chihuahua.

**Universidad Autónoma de Baja California.

Contacto: hermes1713@hotmail.com