Microplásticos en ambientes acuáticos: ¿cuáles son las tecnologías para su eliminación?
DOI:
https://doi.org/10.29105/cienciauanl28.131-4Keywords:
microplásticos, nanoplásticos, contaminación, tecnologías de eliminación, ambientes acuáticosAbstract
La contaminación plástica atrae gran preocupación debido a sus efectos adversos al medio ambiente y la salud de la sociedad en general. Por ello, se han explorado diferentes tecnologías con enfoques físicos, químicos y biológicos para eliminar estos contaminantes en el agua, entre las que destacan la filtración por membrana de adsorción, la coagulación, la oxidación y la degradación microbiana. Por lo tanto, las tecnologías de eliminación de microplásticos abordadas en este trabajo presentan ventajas y desventajas. Actualmente se considera que la combinación de múltiples tecnologías mejoraría su implementación a gran escala, como en las plantas de tratamiento de agua residual.
Downloads
References
Adegoke, Kayode Adesina, Adu, Folasade Abimbola, Oyebamiji, Abel Kolawole, et al. (2023). Microplastics toxicity, detection, and removal from water/wastewater, Marine pollution bulletin, 187, 114546. DOI: https://doi.org/10.1016/j.marpolbul.2022.114546
Arkin, Claire, y Schächtele, Kai. (2020). Atlas del plástico: datos y cifras sobre el mundo de los polímeros sintéticos 2020, México: Heinrich Böll Foundation.
Azizi, Seyed M.M., Haffiez, Nervana, Zakaria, Basem, et al. (2023). Nano-and microplastics as carriers for antibiotics and antibiotic resistance genes, In Current developments in biotechnology and bioengineering (pp. 361-385), Elsevier. DOI: https://doi.org/10.1016/B978-0-323-99908-3.00005-1
Borrelle, Stephanie, Ringma, Jeremy,; Lavender-Law, Kara, et al. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution, Science, 369(6510), 1515-1518. DOI: https://doi.org/10.1126/science.aba3656
Cheng, Yan L., Kim, Jong-Gook, Kim, Hye-Bin, et al. (2021). Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review, Chemical Engineering Journal, 410, 128381. DOI: https://doi.org/10.1016/j.cej.2020.128381
Cui, Ruofan, Jong, Mui-Choo, You, Luhua, et al. (2022). Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions, Chemosphere, 286, 131735. DOI: https://doi.org/10.1016/j.chemosphere.2021.131735
Dey, Thuhin, Uddin, Md Elias, y Jamal, Mamun. (2021). Detection and removal of microplastics in wastewater: evolution and impact, Environmental Science and Pollution Research, 28, 16925-16947. DOI: https://doi.org/10.1007/s11356-021-12943-5
Dos Santos, Naiara de O., Teixeira, Luiz A., Zhou, Qizhi, et al. (2022). Fenton pre-oxidation of natural organic matter in drinking water treatment through the application of iron nails, Environmental Technology, 43(17), 2590-2603. DOI: https://doi.org/10.1080/09593330.2021.1890838
Ekanayaka, Anusha, Tibpromma, Saowaluck, Dai, Donqin, et al. (2022). A review of the fungi that degrade plastic, Journal of fungi, 8(8), 772. DOI: https://doi.org/10.3390/jof8080772
Hartmann, Nanna, Huffer, Thorsten, Thompson, Richard, et al. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris, Environmental Science & Technology, 53(3), 1039-1047. DOI: https://doi.org/10.1021/acs.est.8b05297
Lehtiniemi, Maiju, Hartikainen, Samuel, Näkki, Pinja, et al. (2018). Size matters more than shape: ingestion of primary and secondary microplastics by small predators, Food webs, 17, e00097. DOI: https://doi.org/10.1016/j.fooweb.2018.e00097
Mbachu, Oluchi, Jenkins, Graham, Pratt, Chris, et al. (2020). A new contaminant superhighway? A review of sources, measurement techniques and fate of atmospheric microplastics, Water, Air & Soil Pollution, 231, 1-27. DOI: https://doi.org/10.1007/s11270-020-4459-4
Padervand, Mohsen, Lichtfouse, Eric, Robert, Didier, et al. (2020). Removal of microplastics from the environment. A review, Environmental Chemistry Letters, 18(3), 807-828. DOI: https://doi.org/10.1007/s10311-020-00983-1
Parvin, Fahmida, Jannat, Shumya, y Tareq, Shafi. (2021). Abundance, characteristics and variation of microplastics in different freshwater fish species from Bangladesh, Science of the Total Environment, 784, 147137. DOI: https://doi.org/10.1016/j.scitotenv.2021.147137
Plastics Europe and European Association of Plastics Recycling and Recovery Organisations. (2019). Plastics-the facts 2019. An analysis of European plastics production, demand and waste data, https://www. plasticseurope.org/en/resources/publications/1804-plastics-facts-2019
Rajala, Katriina, Grönfors, Outi, Hesampour, Mehrdad, et al. (2020). Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals, Water Research, 183, 116045. DOI: https://doi.org/10.1016/j.watres.2020.116045
Schymanski, Darena, Goldbeck, Christopher, Humpf, Hans-Ulrich, et al. (2018). Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water, Water research, 129, 154-162. DOI: https://doi.org/10.1016/j.watres.2017.11.011
Yuan, Jianhua, Ma, Jie, Sun, Yiran, Zhou, Tao, et al. (2020). Microbial degradation and other environmental aspects of microplastics/plastics, Science of the Total Environment, 715, 136968. DOI: https://doi.org/10.1016/j.scitotenv.2020.136968
Zhang, Qun, Zhao, Yaping, Du, Fangni, et al.(2020). Microplastic fallout in different indoor environments. Environmental Science & Technology, 54(11), 6530-6539. DOI: https://doi.org/10.1021/acs.est.0c00087
Zhuang, Jie, Rong, Nannan, Wang, Xuerong, et al. (2022). Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water, Separation and Purification Technology, 293, 121133. DOI: https://doi.org/10.1016/j.seppur.2022.121133
