Desarrollo y repercusión de las películas delgadas en la actualidad
DOI:
https://doi.org/10.29105/cienciauanl26.121-6Keywords:
películas delgadas, dispositivos electrónicos, comunicación, energía, amacenamiento, tecnologíaAbstract
Diariamente, la mayoría de nuestras actividades laborales y sociales dependen del uso de diferentes dispositivos electrónicos, los cuales han llegado a ser parte fundamental de nuestro entorno, y nosotros, como sociedad, hemos tenido que adecuarnos a ellos. Los dispositivos electrónicos, como computadoras, celulares, televisiones inteligentes, baterías, celdas solares, etcétera, han permitido que la comunicación, el entretenimiento y el almacenamiento de energía se realicen de una manera más eficiente y su uso se ha vuelto tan común que más de 50% de la población mundial tiene acceso a ellos. Pero, ¿de qué depende su eficiencia?, ¿qué es lo que permite que tengamos mecanismos electrónicos de alta tecnología?
Downloads
References
Angelina, J.T.T., et al. (2019). In vitro haemocompatibility and cytocompatibility evaluation of silver thin film-deposited heart valve prosthesis material. Mater Technol. 34(8):471-479. DOI: https://doi.org/10.1080/10667857.2019.1578465
Bleu, Y., et al. (2023). Towards Room Temperature Phase Transition of W-Doped VO2 Thin Films Deposited by Pulsed Laser Deposition. Materials. 16:1-14. DOI: https://doi.org/10.3390/ma16010461
Carrillo-Castillo, A., et al. (2022). New Formulation to Synthetize Semiconductor Bi2S3 Thin Films Using Chemical Bath Deposition for Optoelectronic Applications. Symmetry. 14:2487. DOI: https://doi.org/10.3390/sym14122487
Doyan, A., Imawanti, Y.D., y Gunawan, E.R. (2018). Characterization Thin Film Nano Particle of Aluminum Tin Oxide (AlTO) as Touch Screen. J. Phys.: Conf. Ser. 1097:012009. DOI: https://doi.org/10.1088/1742-6596/1097/1/012009
Fuller, S.B., Wilhelm, E.J., y Jacobson, J.M. (2002). Ink-Jet Printed Nanoparticle Microelectromechanical Systems. J Microelectromech Syst. 11(1):54- 60. DOI: https://doi.org/10.1109/84.982863
He, X., et al. (2023). Optimization of La2−xSrxCuO4 Single Crystal Film Growth via Molecular Beam Epitaxy. Condens. Matter. 8:13. DOI: https://doi.org/10.3390/condmat8010013
Intel. (s.a.). 2023. Disponible en: https://www.intel.la/content/www/xl/es/homepage.html
Kato, T., et al. (2018). Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga) (Se,S)2’, J-PV. 9(1):1-6. DOI: https://doi.org/10.1109/JPHOTOV.2018.2882206
Lamosa Pisos & Muros. (s.a.). Disponible en: https://lamosa.com/idea/espacios-para-jugar/
Li, X., et al. (2021), Ferroelectric Properties and Polarization Fatigue of La:HfO2 Thin-Film Capacitors’, Phys. Status Solidi RRL. 15(4):1-7. DOI: https://doi.org/10.1002/pssr.202000481
Morari, V., et al. (2022). Spin-Coating and Aerosol Spray Pyrolysis Processed Zn1−xMgxO Films for UV Detector Applications. Nanomaterials. 12:3209. DOI: https://doi.org/10.3390/nano12183209
Nowsherwan, G.A., et al. (2023). Preparation and Numerical Optimization of TiO2:CdS Thin Films in Double Perovskite Solar Cell. Energies. 16:900. DOI: https://doi.org/10.3390/en16020900
Park, J.W., Kang, B.H., y Kim, H.J. (2019). A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Film Transistors for Flexible Electronics’, Adv. Funct. Mater. 30(20):1-40. Disponible en: https://doi.org/10.1002/adfm.201904632. DOI: https://doi.org/10.1002/adfm.201904632
Plugaru, R., et al.(2023).Light-SensingPropertiesof Amorphous Vanadium Oxide Films Prepared by RF Sputtering. Sensors. 23(4):1759. DOI: https://doi.org/10.3390/s23041759
Samsung. (2023). Disponible en: https://semiconductor.samsung.com/newsroom/news/samsung-begins-chip-production-using-3nm-process-technology-with-gaa-architecture/
Seshan, K. (2002). Handbook Of Thin-Film Deposition Processes And Techniques. Principles, Methods, Equipment and Applications. K. Seshan. Norwich, New York, U.S.A.: William Andrew Publishing. DOI: https://doi.org/10.1201/9781482269680
Thirumoorthi, M., et al. (2022). High responsivity n-ZnO/p-CuO heterojunction thin film synthesised by low-cost SILAR method for photodiode applications. Opt. Mater. 128:112410. DOI: https://doi.org/10.1016/j.optmat.2022.112410
Tomioka, K., et al. (2018). Photosensing circuit using thin-film transistors for retinal prosthesis. JJAP. 57:1002B1. DOI: https://doi.org/10.7567/JJAP.57.1002B1
View. (2023). Disponible en: https://view.com/product
Wang, H., et al. (2022). Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. Sensors. 22:1-12. DOI: https://doi.org/10.3390/s22030802
Wang, T., et al. (2021). A compound of ZnO/PDMS with photocatalytic, self-cleaning and antibacterial properties prepared via two-step method. Appl. Surf. Sci. 550:149286. Disponible en: https://doi.org/10.1016/j.apsusc.2021.149286 DOI: https://doi.org/10.1016/j.apsusc.2021.149286
Yan, X., et al. (2022). Fabrication and Properties of InGaZnO Thin-Film Transistors Based on a Sol-Gel Method with Different Electrode Patterns. Micromachines. 13:2207. DOI: https://doi.org/10.3390/mi13122207
Zhang, D., et al. (2020). Electrochemical Corrosion Behavior of Ni-doped ZnO Thin Film Coated on Low Carbon Steel Substrate in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 15:4117-4126. DOI: https://doi.org/10.20964/2020.05.25
Zulfa, V.Z., et al. (2023). Highly Sensitive ZnO/Au Nanosquare Arrays Electrode for Glucose Biosensing by Electrochemical and Optical Detection. Molecules. 28:617. DOI: https://doi.org/10.3390/molecules28020617