Análisis integral del desempeño de fotocatalizadores en la producción de hidrógeno
DOI:
https://doi.org/10.29105/cienciauanl23.100-1Palabras clave:
NaTaO3, Na2ZrxTi6-xO13 (x = 0,1), foto(y electro)catálisis, hidrógeno, heteroestructurasResumen
Se presenta una revisión y análisis integral de resultados de NaTaO3 (perovskita) y la solución sólida Na2ZrxTi6-xO13 (x = 0,1) de túneles rectangulares, en forma de polvos y películas, con alto desempeño en la producción foto y electrocatalítica de H2. La eficiencia de estos procesos fue mejorada mediante: a) el estudio del efecto del método de síntesis en las propiedades y su desempeño en estos procesos, b) la construcción de microestructuras facetadas en películas delgadas, y c) la formación de heteroestructuras mediante el depósito de cocatalizadores metálicos. Se obtuvieron películas delgadas del NaTaO3 con estructura tipo perovskita, altamente cristalinas por LCVD sobre sustratos de acero inoxidable para su aplicación en la reacción fotocatalítica de conversión de agua. Se logró el depósito de películas delgadas de la fase ortorrómbica NaTaO3, mediante la técnica de LCVD, con microestructura altamente facetada tipo piramidal; se observó, además, la presencia de nanoescalones. La eficiencia de las películas de LCVD-NaTaO3 fue 13 veces superior a la de los polvos. Se prepararon exitosamente nanobastones 1D, de las fases Na2ZrxTi6-xO13 (x = 0,1) con estructura de túneles rectangulares, mediante el método de solvocombustión.
Descargas
Citas
Bartels, J.R., Pate, M.B., y Olson, N.K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International Journal of Hydrogen Energy. 35:8371-8384. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.035
Cesar, I., Sivula, K., Kay, A., et al. (2009). Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting. J. Phys. Chem. C. 113:772-782. DOI: https://doi.org/10.1021/jp809060p
Eng, H.W., Barnes, P.W., Auer, B.M., et al. (2003). Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 175(1):94-109. DOI: https://doi.org/10.1016/S0022-4596(03)00289-5
Gómez-Solís, C., Ruiz Gómez, M.A., Torres-Martínez, L.M., et al. (2014). Facile solvocombustion synthesis of crystalline NaTaO3 and its photocatalytic performance for hydrogen production. Fuel. 130-221-227. DOI: https://doi.org/10.1016/j.fuel.2014.04.019
Huerta-Flores, A.M., Chen, J., Torres-Martínez, L.M., et al. (2017). Laser assisted chemical vapor deposition of nanostructured NaTaO3and SrTiO3 thinfilms for efficient photocatalytic hydrogen evolution. Fuel. 197:174-185. DOI: https://doi.org/10.1016/j.fuel.2017.02.016
Huerta-Flores, A.M., Torres-Martínez, L.M., y Moctezuma, E. (2017). Overall photocatalytic water splitting on Na2ZrxTi6-xO13(x=0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts. International Journal of Hydrogen Energy 42 ,14547-14559. ISSN: 0360-3199. DOI: https://doi.org/10.1016/j.ijhydene.2017.04.203
Inoue, Y., Kubokawa, T., y Sato, K.J. (1991). Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water. Phys. Chem. 95:4059-4063. DOI: https://doi.org/10.1021/j100163a032
Jitputti, J., Pavasupree, S., Suzuki, Y., et al. (2006). Photocatalytic Hydrogen Evolution over Tantalate Photocatalysts. Solar Ener. Conver. 0974:CC09. DOI: https://doi.org/10.1557/PROC-0974-CC09-06
Kisch, H. (2015). Photocatalysis: Principles and Applications. Wiley-VCH.
Krol, R., y Parkinson, B.A. (2017). Perspectives on the photoelectrochemical storage of solar energy. MRS Ener. & Sust. 4:1-11. DOI: https://doi.org/10.1557/mre.2017.15
Kudo, A. (2003). Photocatalyst Materials for Water Splitting. Catalysis Surv. 7(1):31-38. DOI: https://doi.org/10.1023/A:1023480507710
Kumar, P., Sharma, P., Shrivastav, R., et al. (2011). Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy. 36:2777-2784. DOI: https://doi.org/10.1016/j.ijhydene.2010.11.107
Li, F., Yang, H., Li, W., et al. (2018). Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering. Joule. 2(1):36-60. DOI: https://doi.org/10.1016/j.joule.2017.10.012
Lv, M., Sun, X., Wei, S., et al. (2017). Ultrathin Lanthanum Tantalate Perovskite Nanosheets Modified by Nitrogen Doping for Efficient Photocatalytic Water Splitting. ACS Nano. 11(11):11441-11448. DOI: https://doi.org/10.1021/acsnano.7b06131
Ogura, S., Kohno, M., Sato, K., et al. (1999). Photocatalytic properties of M2Ti6O13 (M=Na, K, Rb, Cs) with rectangular tunnel and layer structures: Behavior of a surface radical produced by UV irradiation and photocatalytic activity for water decomposition. Phys. Chem. Chem. Phys. 1:179-183. DOI: https://doi.org/10.1039/a806734a
Osterloh, F.E. (2013). Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42:2294-2320. DOI: https://doi.org/10.1039/C2CS35266D
Rodríguez-Torres, J., Gómez-Solís, C., Torres-Martínez, L.M., et al. (2017). Synthesis and characterization of Au-Pd/NaTaO3 multilayer films for photocatalytic hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry. 332:208-214. DOI: https://doi.org/10.1016/j.jphotochem.2016.08.026
Takata, T., Pan, C., y Domen, K. (2015). Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci. Technol. Adv. Mater. 16:033506. DOI: https://doi.org/10.1088/1468-6996/16/3/033506
Torres-Martínez, L.M., R. Gómez, O. Vázquez-Cuchillo, et al. (2010). Enhanced photocatalytic water splitting hydrogen production on RuO2/La: NaTaO3 prepared by sol-gel method. Catalysis Communications. 12:268-272. DOI: https://doi.org/10.1016/j.catcom.2010.09.032
Van Winsen, J.E. (2013). Phys. Research Project University Amsterdam.
Vázquez-Cuchillo, O., Gómez, R., Cruz-López, A., et al. (2013). Improving Water Splitting Using RuO2-Zr/Na2Ti6O13 as a Photocatalyst. Photochem. And Photobiol. A: Chemistry. 266:6-11. DOI: https://doi.org/10.1016/j.jphotochem.2013.05.007
Voorzanger, J. (2012). VU University Amsertdam.
Wan, W., Zhang, R., Ma, M., et al. (2018). Monolithic aerogel photocatalysts: a review. J. Mater. Chem. A. 6:754-775. DOI: https://doi.org/10.1039/C7TA09227J
Wang, D.J., Li, Z.H., An, Y.L., et al. (2012). Photocatalytic H2 evolution property of Zr-doped sodium titanate nanobelts prepared by dealloying of Ti-based metallic glassy powders. Shen J. Int. Conf. Photosynthesis Research for Sustanability. 37:8240-8248. DOI: https://doi.org/10.1016/j.ijhydene.2012.02.051
Winter, C.J. (2009). Hydrogen energydAbundant, efficient, clean: A debate overthe energy-system-of-change. Int J. Hydrogen Energy. 34:S1-S52. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.063
Zeng, S., Kar, P., Thakur, U.K., et al. (2018). A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnol. 29:5-15. DOI: https://doi.org/10.1088/1361-6528/aa9fb1
Zhu, X., Zhang. F., Wang, M. et al. (2014). Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2. Appl. Surf. Sci. 319:83-89. DOI: https://doi.org/10.1016/j.apsusc.2014.07.051