Síntesis de poliésteres alifáticos vía polimerización por apertura de anillo organocatalítica: estudio de la influencia de los parámetros de reacción sobre sus propiedades térmicas y estructura molecular
DOI:
https://doi.org/10.29105/cienciauanl25.113-2Palabras clave:
poliésteres, ROP, catálisis orgánica, TBD, DBUResumen
Se reporta la síntesis de poli(L-lactida) (PLLA), poli(brasilato de etilo) (PEB), poli(ε-caprolactona) (PCL) y poli(ε-decalactona) (PDL), mediante polimerización por apertura de anillo (ROP) organocatalítica. Variaciones en parámetros de reacción, como el catalizador 1,8-diazabiciclo[5-4-0] undec-7-eno (DBU) o 1,4,7-triazabiciclodeceno (TBD), relación molar catalizador:iniciador, adición de donador de protón, y tiempo de reacción fueron evaluadas para alcanzar las más altas conversiones, también se determinaron las propiedades químicas y físicas de los poliésteres obtenidos. A través de las condiciones empleadas para estas reacciones de ROP se lograron conversiones mayores a 90%, pesos moleculares promedio en número (Mn) de ~20 kDa, y valores de dispersidad (Ð) de 1.45–1.90. Igualmente, estos poliésteres alifáticos desarrollaron alta estabilidad térmica (>200°C) y sus transiciones térmicas fueron observadas a temperaturas cercanas a las transiciones reportadas en la bibliografía para estos poliésteres (PLLA, PEB, PCL).
Descargas
Citas
Bu, Y., et al. (2019). Surface Modification of Aliphatic Polyester to Enhance Biocompatibility. Frontiers in Bioengineering and Biotechnology. 7:1-10. Doi: 10.3389/fbioe.2019.00098 DOI: https://doi.org/10.3389/fbioe.2019.00098
Chen, Y., et al. (2008). Study on biodegradable aromatic/aliphatic copolyesters. Brazilian Journal of Chemical Engineering. 25(2):321-335. Doi: 10.1590/S0104-66322008000200011 DOI: https://doi.org/10.1590/S0104-66322008000200011
Chiriac, A. P., et al. (2021). Synthesis of poly(Ethylene brassylate-co-squaric acid) as potential essential oil carrier. Pharmaceutics. 13(4):1-24. Doi: 10.3390/pharmaceutics13040477 DOI: https://doi.org/10.3390/pharmaceutics13040477
Dzienia, A., et al. (2019). Studying the catalytic activity of DBU and TBD upon water-initiated ROP of ϵ-caprolactone under different thermodynamic conditions. Polymer Chemistry. 10(44):6047-6061. Doi: 10.1039/c9py01134j DOI: https://doi.org/10.1039/C9PY01134J
Farah, S., Anderson, D.G., y Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Advanced Drug Delivery Reviews. 107:367-392. Doi: 10.1016/j.addr.2016.06.012 DOI: https://doi.org/10.1016/j.addr.2016.06.012
Fuoco, T., et al. (2021). Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules. 22(2):949-960. Doi: 10.1021/acs.biomac.0c01621 DOI: https://doi.org/10.1021/acs.biomac.0c01621
Güney, A., et al. (2018). Thermoplastic PCL-b-PEG-b-PCL and HDI polyurethanes for extrusion-based 3D-printing of tough hydrogels. Bioengineering. 5(4). Doi: 10.3390/BIOENGINEERING5040099. DOI: https://doi.org/10.3390/bioengineering5040099
Jasinska-Walc, L., et al. (2014). Topological behavior mimicking ethylene-hexene copolymers using branched lactones and macrolactones. Polymer Chemistry. 5(10):3306-3310. Doi: 10.1039/c3py01754k DOI: https://doi.org/10.1039/C3PY01754K
Kamber, N.E., et al. (2007). Organocatalytic ring-opening polymerization. Chemical Reviews. 107(12):5813-5840. Doi: 10.1021/cr068415b DOI: https://doi.org/10.1021/cr068415b
Khuenkeao, T., Petchwattana, N., y Covavisaruch, S. (2016). Thermal and mechanical properties of bioplastic poly(lactic acid) compounded with silicone rubber and talc. AIP Conference Proceedings, 1713:1-6. Doi: 10.1063/1.4942294 DOI: https://doi.org/10.1063/1.4942294
Krukiewicz, K., et al. (2019). Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial. BMC Biomedical Engineering. 1(1):1-12. Doi: 10.1186/s42490-019-0010-3 DOI: https://doi.org/10.1186/s42490-019-0010-3
Lecomte, P., y Jérôme, C. (2012). Recent developments in ring-opening polymerization of lactones. Advances in Polymer Science. 245:173-218. Doi: 10.1007/12_2011_144 DOI: https://doi.org/10.1007/12_2011_144
Lohmeijer, B.G.G., et al. (2006), Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules. 39(25):8574-8583. Doi: 10.1021/ma0619381 DOI: https://doi.org/10.1021/ma0619381
Mohite, K.K., et al. (2016). Cloisite Modified Tin as a Catalyst for the Ring Opening Polymerization of ε-Caprolactone. International Journal of Chemistry. 30(2):2051-2732. Disponible en: https://www.researchgate.net/publication/305401929
Müller, A.J., et al. (2014). Crystallization of PLA-based Materials. En Alfonso Jiménez, Mercedes Peltzer, Roxana Ruseckaite (edit). Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications. Pp. 66-98. Doi: 10.1039/9781782624806-00066 DOI: https://doi.org/10.1039/9781782624806-00066
Nifantev, I., e Ivchenko, P. (2019). DFT Modeling of Organocatalytic Ring-Opening Polymerization of Cyclic Esters: A Crucial Role of Proton Exchange and Hydrogen Bonding. Polymers: 11(12):2078. Doi: 10.3390/polym11122078 DOI: https://doi.org/10.3390/polym11122078
Olsén, P., et al. (2013). ε-Decalactone: A thermoresilient and toughening comonomer to poly(l -lactide). Biomacromolecules. 14(8):2883-2890. Doi: 10.1021/bm400733e DOI: https://doi.org/10.1021/bm400733e
Pascual, A., Sardón, H., et al. (2014a). Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst. Journal of Polymer Science, Part A: Polymer Chemistry. 53(4):552-561. Doi: 10.1002/pola.27473 DOI: https://doi.org/10.1002/pola.27473
Pascual, A., Sardon, H., et al. (2014b). Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate: A cheap and renewable macrolactone. ACS Macro Letters. 3(9):849-853. Doi: 10.1021/mz500401u DOI: https://doi.org/10.1021/mz500401u
Song, D., et al. (2019). Morphology and crystallization kinetics of poly(ethylene brassylate). En APS March Meeting Abstracts, p. L70.071. Disponible en: https://ui.adsabs.harvard.edu/abs/2019APS..MARL70071S
Speranza, V., et al. (2014). Characterization of the polycaprolactone melt crystallization: Complementary optical microscopy, DSC, and AFM studies. The Scientific World Journal. 2014. Doi: 10.1155/2014/720157 DOI: https://doi.org/10.1155/2014/720157
Su, W.-F. (2013). Ring-Opening Polymerization. Stereo Rubbers. Pp. 267-299. Doi: 10.1007/978-3-642-38730-2_11 DOI: https://doi.org/10.1007/978-3-642-38730-2_11
Wei, Z., et al. (2019). Synthesis, microstructure and mechanical properties of partially biobased biodegradable poly(ethylene brassylate-co-ε-caprolactone) copolyesters. Journal of the Mechanical Behavior of Biomedical Materials. 91:255-265. Doi: 10.1016/j.jmbbm.2018.12.019 DOI: https://doi.org/10.1016/j.jmbbm.2018.12.019
Wu, B.B., Tian, L.L., y Wang, Z.X. (2017). Ring-opening polymerization of rac-lactide catalyzed by crown ether complexes of sodium and potassium iminophenoxides. RSC Advances. 7(39):24055-24063. Doi: 10.1039/c7ra03394j DOI: https://doi.org/10.1039/C7RA03394J