Economía circular en la acuicultura: una nueva visión hacia la sostenibilidad
DOI:
https://doi.org/10.29105/cienciauanl28.134-3Keywords:
acuicultura, economía circular, nutrientes, reciclaje, sostenibilidadAbstract
La economía circular en la acuicultura propone optimizar el uso de recursos mediante el reciclaje de nutrientes, agua y residuos, transformando residuos en insumos útiles. Este enfoque impulsa prácticas sostenibles: sistemas acuapónicos, integración de procesos productivos y el uso de tecnologías de monitoreo ambiental. Entre sus beneficios destacan la reducción del impacto ambiental, el aumento de la eficiencia económica y la conservación de ecosistemas. No obstante, enfrenta desafíos como la inversión inicial, la capacitación de productores y la aceptación de productos reciclados. Superarlos requiere colaboración intersectorial para avanzar hacia una acuicultura más sostenible e innovadora.
Downloads
References
Badiola, Maddi, Mendiola, Diego, & Bostock, John (2012). Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges, Aquacultural Engineering, 51, 26-35, https://doi.org/10.1016/j.aquaeng.2012.07.004 DOI: https://doi.org/10.1016/j.aquaeng.2012.07.004
Chisti, Yusuf. (2007). Biodiesel from microalgae, Biotechnology Advances, 25(3), 294-306, https://doi.org/10.1016/j.biotechadv.2007.02.001 DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001
Crab, Roselien, Defoirdt, Tom, Bossier, Peter, et al. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges, Aquaculture, 351-356, https://doi.org/10.1016/j.aquaculture.2012.04.046 DOI: https://doi.org/10.1016/j.aquaculture.2012.04.046
Dauda, Akeem B., Ajadi, Abdullateef, Tola-Fabunmi, Adenike S., et al. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems, Aquaculture and Fisheries, 4(3), 81-88, https://doi.org/10.1016/J.AAF.2018.10.002 DOI: https://doi.org/10.1016/j.aaf.2018.10.002
Fraga-Corral, M., Quiroga, M.I., Ronza, P., et al. (2022). Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products, Trends in Food Science & Technology, 119, 23-35, https://doi.org/10.1016/j.tifs.2021.11.026 DOI: https://doi.org/10.1016/j.tifs.2021.11.026
Joyce, Alyssa, Goddek, Simon, Kotzen, Benz, et al. (2019). Aquaponics: closing the cycle on limited water, land and nutrient resources, in: Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M. (Eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future, Springer International Publishing, Cham, 19-34, https://doi.org/10.1007/978-3-030-15943-6_2 DOI: https://doi.org/10.1007/978-3-030-15943-6_2
Kardung, Maximilian, Cingiz, Kutay, Costenoble, Ortwin, et al. (2021). Development of the circular bioeconomy: Drivers and indicators, Sustainability, 13(1), 413, https://doi.org/10.3390/su13010413 DOI: https://doi.org/10.3390/su13010413
Lee, Jinhwan, Kim, In-Soo, Emmanuel, Aalfin, et al. (2019). Microbial valorization of solid wastes from a recirculating aquaculture system and the relevant microbial functions, Aquacultural Engineering, 87, 102016, https://doi.org/10.1016/j.aquaeng.2019.102016 DOI: https://doi.org/10.1016/j.aquaeng.2019.102016
Monteiro, Ana, Paquincha, Diogo, Martins, Florinda, et al. (2018). Liquid by-products from fish canning industry as sustainable sources of ω3 lipids, Journal of Environmental Management, 219, 9-17, https://doi.org/10.1016/J.JENVMAN.2018.04.102 DOI: https://doi.org/10.1016/j.jenvman.2018.04.102
Omont, Alexia. (2022). Evaluación de un sistema multitrófico integrado con camarón, ostión y macroalgas en México (tesis de maestría), Universidad Autónoma de Baja California.
Observatorio Europeo del Mercado de los Productos de la Pesca y de la Acuicultura (EUMOFA). (2021). Estructura europea de los precios de la cadena de suministro, https://eumofa.eu/documents/20124/35698/PTAT+Octopus_final_ES.pdf/eeb01de5-5d3-fae8-41ed-b22aa6fa2721?t=1614617198815
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2020). El estado mundial de la pesca y la acuicultura 2020: la sostenibilidad en acción, https://doi.org/10.4060/ca9229es DOI: https://doi.org/10.4060/ca9229es
Ronza, Paolo, Robledo, Diego, Bermúdez, Roberto, et al. (2019). Integrating genomic and morphological approaches in fish pathology research: The case of turbot (Scophthalmus maximus) enteromyxosis, Frontiers in Genetics, 26(10), 1-17, https://doi.org/10.3389/fgene.2019.00026 DOI: https://doi.org/10.3389/fgene.2019.00225
Sri-uam, Puchong, Donnuea, Seri, Powtongsook, Sorawit, et al. (2016). Integrated MultiTrophic Recirculating Aquaculture System for Nile Tilapia (Oreochlomis niloticus), Sustainability, 8(592), 1-15, https://doi.org/10.3390/su8070592 DOI: https://doi.org/10.3390/su8070592
Sun, Jianan, Zhang, Jinging, Zhao, Dandan, et al. (2019). Characterization of turbot (Scophthalmus maximus) skin and the extracted acid-soluble collagen, Journal of Ocean University of China, 18(3), 687-692, https://doi.org/10.1007/s11802-019-3837-2 DOI: https://doi.org/10.1007/s11802-019-3837-2
Troell, M., Joyce, A., Chopin, T., et al. (2009). Ecological engineering in aquaculture-Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems, Aquaculture, 297(1-4), 1-9, https://doi.org/10.1016/j.aquaculture.2009.09.010 DOI: https://doi.org/10.1016/j.aquaculture.2009.09.010
Zhang, Cunsheng, Su, Haijia, Baeyens, Jan, et al. (2019). Reviewing the anaerobic digestion of food waste for biogas production, Renewable and Sustainable Energy Reviews, 38, 383-392, https://doi.org/10.1016/j.rser.2014.05.038 DOI: https://doi.org/10.1016/j.rser.2014.05.038
