Análisis electromagnético mediante FDTD de un sustrato para etiquetas RFID pasivas
DOI:
https://doi.org/10.29105/cienciauanl23.103-3Keywords:
etiqueta RFID, interferencia electromagnética, ley de Snell, FDTDAbstract
La tecnología RFID, la cual permite el reconocimiento de objetos y transmisión de datos mediante señales de radiofrecuencia, presenta un desempeño que depende del material del producto al que son adheridas, por ello para su funcionamiento óptimo en cualquier producto es necesario diseñar un sustrato para la etiqueta RFID que evite la IEM. Se presenta un análisis en un sustrato para etiquetas RFID mediante el método FDTD, el cual demuestra que con el uso del sustrato se reflejan las OEM hacia la etiqueta RFID, aislando la etiqueta del producto al cual se adhiere y con esto evitar la IEM.
Downloads
References
Bibi, F., Guillaume, C., Gontard, N., et al. (2017). A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends in Food Science & Technology. 62:91-103. DOI: https://doi.org/10.1016/j.tifs.2017.01.013
Björninen, T., Sydänheimo, L., Ukkonen, L., et al. (2014). Advances in antenna designs for UHF RFID tags mountable on conductive items. IEEE Antennas and Propagation Magazine. 56(1):79-103. DOI: https://doi.org/10.1109/MAP.2014.6821761
Bong, F.L., Lim, E.H., y Lo, F.L. (2017). Flexible folded-patch antenna with serrated edges for metal-mountable UHF RFID tag. IEEE Transactions on Antennas and Propagation. 65(2):873-877. DOI: https://doi.org/10.1109/TAP.2016.2633903
Hecht, E. (2002). Optic., San Francisco: Addison-Wesley.
Iizuka, K. (2002). Elements of Photonics. Toronto, Canadá: John Wiley & Sons. DOI: https://doi.org/10.1002/0471221376
Inan, U.S., y Marshall, R.A. (2011). Numerical electromagnetics: the FDTD method. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511921353
Jackson, J.D. (1980). Electrodinámica clásica. España:Alhambra.
Liu, Q., Yu, Y., y He, S. (2013). Capacitively loaded, inductively coupled fed loop antenna with an omnidirectional radiation pattern for UHF RFID tags. IEEE Antennas and Wireless Propagation Letters. 12: 1161-1164. DOI: https://doi.org/10.1109/LAWP.2013.2281070
Magill, M. K., Conway, G., y Scanlon, W. (2017). Tissue-Independent Implantable Antenna for In-Body Communications. IEEE Transactions on Antennas and Propagation. 65: 4406-4417. DOI: https://doi.org/10.1109/TAP.2017.2708119
Ramo S., Whinnery, J.R., y Duzer, T.V. (2008). Fields and waves in communication electronics. John Wiley & Sons.
Schneider, J.B. (2010). Understanding the finite-difference timedomain method. School of electrical engineering and computer science Washington State University.
Soyata, T., Copeland, L., y Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine. 16(1):22-5. DOI: https://doi.org/10.1109/MCAS.2015.2510198
Tsai, M.C., Chiu, C.W., Wang, H.C., et al. (2013). Inductively coupled loop antenna design for UHF RFID on-body applications. Progress In Electromagnetics Research. 143:315-330. DOI: https://doi.org/10.2528/PIER13080707
Ukkonen, L., Sydanheimo, L., y Kivikoski, M. (2004). Patch antenna with EBG ground plane and two-layer substrate for passive RFID of metallic objects. Antennas and Propagation Society International Symposium. Pp. 93-96. DOI: https://doi.org/10.1109/APS.2004.1329561
Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on antennas and propagation. Pp. 302-307. DOI: https://doi.org/10.1109/TAP.1966.1138693
Zhang, J., Tian, G., Marindra, A., et al. (2017). A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications. Sensors. 17: 265. DOI: https://doi.org/10.3390/s17020265