Reconstruyendo el pasado geológico por medio del análisis de minerales pesados

Autores/as

  • Sonia Alejandra Torres-Sánchez Universidad Autónoma de San Luis Potosí
  • Uwe Jenchen Universidad Autónoma de Nuevo León
  • Carita Augustsson Universitetet i Stavanger
  • José Rafael Barboza-Gudiño Universidad Autónoma de San Luis Potosí

Palabras clave:

rocas, sedimentos, corteza terrestre, minerales, procedencia, geología

Resumen

Las rocas sedimentarias se forman a partir de la acumulación de sedimentos. Estos sedimentos consisten en fragmentos que fueron desprendidos de una roca parental o de organismos por procesos de meteorización (mecánica o química). El agua, el viento o el hielo glacial suelen ser agentes que sirven para transportar los productos de la meteorización a lugares de sedimentación conocidos como cuencas sedimentarias, donde se acumulan y por procesos de diagénesis forman rocas de tipo sedimentario. Incluso al experimentar  aumentos drásticos en la profundidad de enterramiento se pueden formar rocas de tipo metamórfico a partir de las rocas sedimentarias previamente formadas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sonia Alejandra Torres-Sánchez, Universidad Autónoma de San Luis Potosí

Ingeniera geóloga mineralogista y doctora en Ciencias, con especialidad en Geociencias, por la UANL.  Profesora-investigadora de tiempo completo de la FI-UASLP. Miembro del cuerpo académico “Geodinámica  y Evolución de la Corteza”.

Uwe Jenchen, Universidad Autónoma de Nuevo León

Geólogo, maestro en Ciencias y Dr. rer. nat. por el Instituto de Geología y Paleontología de la Westfälische  Wilhelms-Universität, Münster de Alemania. Profesor titular de la FCT-UANL. Líder del Cuerpo Académico  “Cuencas Sedimentarias de México”. 

Carita Augustsson, Universitetet i Stavanger

Dr. rer. nat. por el Instituto de Geología y Paleontología de la Westfälische Wilhelms-Universität, Münster de Alemania. Profesora asociada del Instituto de Tecnología del Petróleo de la Universidad de Stavanger,  Noruega.

José Rafael Barboza-Gudiño, Universidad Autónoma de San Luis Potosí

Ingeniero geólogo por la UASLP. Maestro y doctor por la Universidad Técnica de Clausthal, en Alemania.  Profesor-investigador de tiempo completo y director del Instituto de Geología, de la UASLP. 

Citas

Ali, S., et al. (2014). The provenance of Cretaceous to Quaternary sediments in the Tarfaya Basin, SW Morocco: evidence from trace element geochemistry and radiogenic Nd-Sr isotopes. Journal of African Earth Sciences, 90, 64-76.

Armstrong-Altrin, J.S. (2014). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57, 1446-1461.

Barbera, G., Critelli, S., y Mazzoleni, P. (2011). Petrology and geochemistry of Cretaceous sedimentary rocks of the Monte Soro Unit (Sicily, Italy). Constraints on weathering, diagenesis, and provenance. Journal of Geology, 119, 51-68.

Barboza-Gudiño, J.R., et al. (2011). Geocronología de circones detríticos de diferentes localidades del Esquisto Granjeno en el noreste de México. Boletín de la Sociedad Geológica Mexicana, 63, 2, 201-216.

Basu, A. (2003). A perspective on quantitative provenance analysis, in: Valloni, R., y Basu, A. (Eds.), Quantitative Provenance Studies in Italy, Memorie Descrittive della Carta Geologica dell’Italia, vol. 61, p. 11-22.

Bhatia, M.R., y Taylor, S.R. (1981). Trace-element geochemistry and sedimentary provinces: a study from the Tasman geosyncline, Australia. Chemical Geology, 33, 115-125.

Blatt, H., Middleton, G.V., y Murray, R.C. (1972). Origin of sedimentary rocks. Prentice-Hall, Inc., New Jersey.

Boggs, S. (2009). Petrology of sedimentary rocks. Cambridge University Press.

Bradley S., Van Gosen, et al. (2014). Deposit Model for Heavy-Mineral Sands in Coastal Environments. Virginia, Scientific Investigations Report 2010-5070 L, U.S. Geological Survey.

Cullers, R.L., y Podkovyrov, N. (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117, 157-183.

Dunkl, I., Di Gulio, A., y Kuhlemann, J. (2001). Combination of single-grain fission-track geochronology and morphological analysis of detrital zircon crystals in provenance studies-sources of the Macigno formation (Apennines, Italy). Journal Sedimentary Research, 71, 516-525.

Fedo, C.M., Eriksson, K.A., y Krogstad, E.J. (1996). Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751-1764.

Felicka, E. (2000). Heavy minerals in the Carboniferous sediments of the Intra-Sudetic Basin as palaeogeographic indicators. Geologia Sudetica, Vol. 33, No.1, 49-65.

Garzanti, E., et al. (2013). Weathering and relative durability of detrital minerals in equatorial climate: and petrology and geochemistry in the East African Rift. Journal of Geology, 121, 547-580.

Ghosh, S., y Sarkar, S., (2010). Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana Basin, Central India: clues for provenance. Chemical Geology, 277, 78-100.

Götze, J. (2009). Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineralogical Magazine, 73, 645-671.

Imchen, W., Thong, G.T., y Pongen, T. (2014). Provenance, tectonic setting and age of the sediments of the Upper Disang Formation in the Phek District, Nagaland. Journal of Asian Earth Sciences, 88, 11-27.

Lihou, J.C., y Mange-Rajetzky, M.A. (1996). Provenance of the Sardona flysch, eastern Swiss Alps: example of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sedimentary Geology, 105, 141-157.

Mackenzie, F.T. (2005). Sediments, diagenesis, and sedimentary rocks: Treatise on Geochemistry, vol. 7, Elsevier.

Mange-Rajetzky, M.A. (1981). Detrital blue sodic amphibole in recent sediments, southern coast, Turkey. Journal of the Geological Society of London 138, 83-92.

Mange, M. A., y Maurer, H. F. (1992). Heavy minerals in colour London: Chapman & Hall. Vol. 147, p. 145.

McCann, T. (1991). Petrological and geochemical determination of provenance in the southern Welsh Basin. Geological Society of London, Special Publication, 57, 215-230.

Morton, A.C. (1985). Heavy minerals in provenance interpretation. In: Zuffa, G.G. (Ed.), Provenance of Arenites. NATO Adv. Sci. Srs., C-148. Reidel, pp. 249-277.

Morton, A.C. (1991). Geochemical studies of detrital heavy minerals and their application to provenance research. In: Morton, A.C., Kronz, A., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies. Geol. Soc. Lond. Spec. Publ., vol. 57, pp. 31-45.

Morton, A.C. y Chenery, S. (2009). Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic-Paleocene sandstones of the Norwegian Sea. Journal of Sedimentary Research, 79, 540-553.

Pettijohn, F.J., Potter, P.E., y Siever, R. (1987). Sand and Sandstone, Springer, 553 p.

Rahl, J.M., et al. (2003). Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31, 61-764.

Raymond, L.A. (2002). Petrology: the study of igneous, sedimentary, and metamorphic rocks. McGraw-Hill Science, Engineering & Mathematics.

Roser, B.P., y Korsch, R.J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratios. Journal of Geology, 94, 635-650.

Roser, B.P., y Korsch, R.J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis ofmajor-element data. Chemical Geology, 67, 119-139.

Seyedolali, A., et al. (1997). Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis. Geology, 25, 787-790.

Sircombe, K.N. (1999). Tracing provenance through the isotopic ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124, 47-67.

Stattegger, K. (1976). Schwermineraluntersuchungen in den klastischen Serien der Variszischen Geosynklinale der Ostund Zentral-pyrenaën. Mitt. Osterr. Geogr. Ges. 69, 267-290.

Torres S., S.A., et al. (2015). Magmatic source and metamorphic grade of metavolcanic rocks from the Granjeno Schist: was northeastern Mexico a part of Pangaea? Geological Journal, Vol. 51, 845-863.

Torres S., S.A. (s.a.), Implicaciones geodinámicas del Complejo Metamórfico Paleozoico de la Sierra Madre Oriental en el Noreste de México. Tesis Doctoral. Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, 236 p.

Von Eynatten, H., y Gaupp, R. (1999). Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis, and mineral chemistry. Sedimentary Geology, 124, 81-111.

Von Eynatten, H., y Wijbrans, J.R. (2003). Precise tracing of exhumation and provenance using Ar/Ar-geochronology of detrital white mica: the example of the Central Alps. Geological Society London, Special Publication, 208, 289-305.

Zack, T., et al. (2002). Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122.

Descargas

Publicado

2023-10-17

Cómo citar

Torres-Sánchez, S. A., Jenchen, U., Augustsson, C., & Barboza-Gudiño, J. R. (2023). Reconstruyendo el pasado geológico por medio del análisis de minerales pesados. Revista CienciaUANL, 21(87), 55–59. Recuperado a partir de https://cienciauanl.uanl.mx/ojs/index.php/revista/article/view/21

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.